On Nichols (braided) Lie algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braided m-Lie Algebras

Braided m-Lie algebras induced by multiplication are introduced, which generalize Lie algebras, Lie color algebras and quantum Lie algebras. The necessary and sufficient conditions for the braided m-Lie algebras to be strict Jacobi braided Lie algebras are given. Two classes of braided m-Lie algebras are given, which are generalized matrix braided m-Lie algebras and braided m-Lie subalgebras of...

متن کامل

On Lie Algebras in Braided Categories

The category of group-graded modules over an abelian group G is a monoidal category. For any bicharacter of G this category becomes a braided monoidal category. We define the notion of a Lie algebra in this category generalizing the concepts of Lie super and Lie color algebras. Our Lie algebras have n-ary multiplications between various graded components. They possess universal enveloping algeb...

متن کامل

Quantum and Braided Lie Algebras

We introduce the notion of a braided Lie algebra consisting of a finite-dimensional vector space L equipped with a bracket [ , ] : L⊗L → L and a Yang-Baxter operator Ψ : L⊗L → L⊗L obeying some axioms. We show that such an object has an enveloping braided-bialgebra U(L). We show that every generic R-matrix leads to such a braided Lie algebra with [ , ] given by structure constants cK determined ...

متن کامل

Lie Algebras and Braided Geometry

We show that every Lie algebra or superLie algebra has a canonical braiding on it, and that in terms of this its enveloping algebra appears as a flat space with braided-commuting coordinate functions. This also gives a new point of view about q-Minkowski space which arises in a similar way as the enveloping algebra of the braided Lie algebra gl2,q. Our point of view fixes the signature of the m...

متن کامل

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2015

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x15500822